Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167088, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37716678

RESUMO

Compound hydrometeorological extremes have been widely examined under climate change, they have significant impacts on ecological and societal well-being. This study sheds light on a new category compound of contrasting extremes, namely compounding wet and dry extremes (CWDEs). The CWDEs are characterized as devastating dry events (EDs) accompanied by wet extremes (EWs) in a given time window. Notably, we first adopt a separate system to identify coinciding events considering the different evolving processes and impacting patterns of EDs and EWs. The peak-over-threshold and standardized index methods are used in a daily and monthly window to identify EWs and EDs respectively. Furthermore, the spatial-temporal changes and risky patterns of CWDEs are revealed by using the Mann-Kendall test, the Ordinary Least Squares, and the Global and Local Moran indices. Germany is the study case. As one major finding, the results indicate a pronounced seasonal effect and spatial clustering pattern of CWDEs. The summer is the most vulnerable period for CWDEs, and the spatial hotspots are mainly located in the southern tip of Germany, as well as in the vicinity of the capital city Berlin. Besides, robust uptrends in CWDEs across all evaluation metrics have been discovered in historical periods, and the moist climate and complex geography collectively contribute to severe CWDEs. Unexpectedly, the study finds that compounding events in dry regions are mainly driven by wet extremes, whereas they show a higher dependency on dry anomalies in wet regions. The research provides new insights into compound extremes which are composed of individual hazards with distinct features. Related findings will aid decision-makers in producing effective risk mitigation plans for prioritizing vulnerable regions. Lastly, the robust framework and open access data allow for extensive exploration of various compounding hazards in different regions.

2.
Sci Data ; 9(1): 172, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422098

RESUMO

Central Asia is a data scarce region, which makes it difficult to monitor and minimize the impacts of a drought. To address this challenge, in this study, a high-resolution (5 km) Standardized Precipitation Evaporation Index (SPEI-HR) drought dataset was developed for Central Asia with different time scales from 1981-2018, using Climate Hazards group InfraRed Precipitation with Station's (CHIRPS) precipitation and Global Land Evaporation Amsterdam Model's (GLEAM) potential evaporation (Ep) datasets. As indicated by the results, in general, over time and space, the SPEI-HR correlated well with SPEI values estimated from coarse-resolution Climate Research Unit (CRU) gridded time series dataset. The 6-month timescale SPEI-HR dataset displayed a good correlation of 0.66 with GLEAM root zone soil moisture (RSM) and a positive correlation of 0.26 with normalized difference vegetation index (NDVI) from Global Inventory Monitoring and Modelling System (GIMMS). After observing a clear agreement between SPEI-HR and drought indicators for the 2001 and 2008 drought events, an emerging hotspot analysis was conducted to identify drought prone districts and sub-basins.

3.
Sci Total Environ ; 799: 149145, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365270

RESUMO

This study investigates the drivers of water use efficiency (WUE), a key metric of water resources management, and its changes over eight regions across China from 1982 to 2015 based on gross primary production (GPP) and actual evapotranspiration (AET) datasets. The order of seasonal change of WUE from large to small is autumn, summer, spring and winter. The drivers include seven variables, air temperature, specific humidity, precipitation, short-wave radiation, Normalized Difference Vegetation Index (NDVI), soil moisture and CO2. Our analysis suggests that the sensitivity of annual average NDVI to WUE changes was high nationwide, but there were some differences in seasonal scales. The annual average contribution of air temperature and CO2 affecting WUE change was relatively high in China's largest area (SW, SE, E, NP). Other influencing factors were only relatively high in the local area. Seasonally, NDVI is the driving factor with the highest contribution rate in summer and autumn for NC and NW region. The seasonal contribution rates of driving factors in other regions are significantly different. For the study period (1982-2015), the shrubland ecosystem had the highest annual WUE followed by forest and cropland. The WUE of the farmland ecosystem was higher than that of the grassland ecosystem in most areas.


Assuntos
Ecossistema , Água , China , Florestas , Solo
4.
Sensors (Basel) ; 21(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451056

RESUMO

Flood depth monitoring is crucial for flood warning systems and damage control, especially in the event of an urban flood. Existing gauge station data and remote sensing data still has limited spatial and temporal resolution and coverage. Therefore, to expand flood depth data source taking use of online image resources in an efficient manner, an automated, low-cost, and real-time working frame called FloodMask was developed to obtain flood depth from online images containing flooded traffic signs. The method was built on the deep learning framework of Mask R-CNN (regional convolutional neural network), trained by collected and manually annotated traffic sign images. Following further the proposed image processing frame, flood depth data were retrieved more efficiently than manual estimations. As the main results, the flood depth estimates from images (without any mirror reflection and other inference problems) have an average error of 0.11 m, when compared to human visual inspection measurements. This developed method can be further coupled with street CCTV cameras, social media photos, and on-board vehicle cameras to facilitate the development of a smart city with a prompt and efficient flood monitoring system. In future studies, distortion and mirror reflection should be tackled properly to increase the quality of the flood depth estimates.


Assuntos
Inundações , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador
5.
Sensors (Basel) ; 21(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203863

RESUMO

Remote Sensing, as a driver for water management decisions, needs further integration with monitoring water quality programs, especially in developing countries. Moreover, usage of remote sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to assess the efficacy of available sensors to complement the often limited field measurements from such programs and build models that support monitoring tasks. Here, we integrate field measurements (2013-2019) from the Mexican national water quality monitoring system (RNMCA) with data from Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a), Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2 Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2 Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to support monitoring operations. However, OLCI atmospherically corrected data is useful to develop accurate models using an ELM, particularly for Turbidity (R2 = 0.7). We conclude that remote sensing is useful to support monitoring systems tasks, and its progressive integration will improve the quality of water quality monitoring programs.


Assuntos
Tecnologia de Sensoriamento Remoto , Qualidade da Água , Clorofila A , Monitoramento Ambiental , Água
6.
Neural Regen Res ; 15(4): 748-758, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638100

RESUMO

OBJECTIVE: To judge the efficacies of neural stem cell (NSC) transplantation on functional recovery following contusion spinal cord injuries (SCIs). DATA SOURCES: Studies in which NSCs were transplanted into a clinically relevant, standardized rat model of contusion SCI were identified by searching the PubMed, Embase and Cochrane databases, and the extracted data were analyzed by Stata 14.0. DATA SELECTION: Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso, Beattie, and Bresnahan lo-comotor rating scale. Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups. OUTCOME MEASURES: The restoration of motor function was assessed by the Basso, Beattie, and Bresnahan locomotor rating scale. RESULTS: We identified 1756 non-duplicated papers by searching the aforementioned electronic databases, and 30 full-text articles met the inclusion criteria. A total of 37 studies reported in the 30 articles were included in the meta-analysis. The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs, to a moderate extent (pooled standardized mean difference (SMD) = 0.73; 95% confidence interval (CI): 0.47-1.00; P < 0.001). NSCs obtained from different donor species (rat: SMD = 0.74; 95% CI: 0.36-1.13; human: SMD = 0.78; 95% CI: 0.31-1.25), at different donor ages (fetal: SMD = 0.67; 95% CI: 0.43-0.92; adult: SMD = 0.86; 95% CI: 0.50-1.22) and from different origins (brain-derived: SMD = 0.59; 95% CI: 0.27-0.91; spinal cord-derived: SMD = 0.51; 95% CI: 0.22-0.79) had similar efficacies on improved functional recovery; however, adult induced pluripotent stem cell-derived NSCs showed no significant efficacies. Furthermore, the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery (SMD = 0.45; 95% CI: 0.21-0.70). However, shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies (acute: SMD = 1.22; 95% CI: 0.81-1.63; subacute: SMD = 0.75; 95% CI: 0.42-1.09). For chronic injuries, NSC implantation did not significantly improve functional recovery (SMD = 0.25; 95% CI: -0.16 to 0.65). CONCLUSION: NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.

7.
Sci Total Environ ; 697: 134213, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32380632

RESUMO

Time-lapse cameras in combination with simple measuring rods can form a highly reliable low-cost sensor network monitoring snow depth in a high spatial and temporal resolution. Depending on the number of cameras and the temporal recording resolution, such a network produces large sets of image time series. In order to extract the snow depth time series from these collections of images in acceptable time, automated processing methods have to be applied. Besides classic image processing based on edge detection methods, there are nowadays ready-to-use convolutional neural network frameworks like Mask R-CNN that facilitate instance segmentation and thus allow for fully automated snow depth measurements from images using a detectable measuring rod. This study investigates the applicability of Mask R-CNN embedded in a newly developed work flow for snow depth measurements. The new method is compared to an automated image processing method carried out utilizing functionalities provided by the OpenCV library. The quality of both methods was assessed with the inclusion of manual evaluations of the image series. As a result, the newly introduced work flow outperforms the present classic image processing method in regard to stability, accuracy and portability. By applying the Mask R-CNN framework, the overall RMSE of two considered time series is reduced to approximately 20% of the value produced by means of the classic image processing approach. Moreover, the ratio of values within five centimeter deviation from the reference value was increased from 75% to 88% on average. Since no parameters have to be adjusted, the Mask R-CNN framework is able to detect known shapes reliably in almost any environment, making the presented method highly flexible.

8.
Sci Total Environ ; 615: 1028-1047, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751407

RESUMO

Sustainable water basin management requires characterization of flow regime in river networks impacted by anthropogenic pressures. Flow regime in ungauged catchments under current, future, or natural conditions can be assessed with hydrological models. Developing hydrological models is, however, resource demanding such that decision makers might revert to models that have been developed for other purposes and are made available to them ('off-the-shelf' models). In this study, the impact of epistemic uncertainty of flow regime indicators on flow-ecological assessment was assessed at selected stations with drainage areas ranging from about 400 to almost 90,000km2 in four South European basins (Adige, Ebro, Evrotas and Sava). For each basin, at least two models were employed. Models differed in structure, data input, spatio-temporal resolution, and calibration strategy, reflecting the variety of conditions and purposes for which they were initially developed. The uncertainty of modelled flow regime was assessed by comparing the modelled hydrologic indicators of magnitude, timing, duration, frequency and rate of change to those obtained from observed flow. The results showed that modelled flow magnitude indicators at medium and high flows were generally reliable, whereas indicators for flow timing, duration, and rate of change were affected by large uncertainties, with correlation coefficients mostly below 0.50. These findings mirror uncertainty in flow regime indicators assessed with other methods, including from measured streamflow. The large indicator uncertainty may significantly affect assessment of ecological status in freshwater systems, particularly in ungauged catchments. Finally, flow-ecological assessments proved very sensitive to reference flow regime (i.e., without anthropogenic pressures). Model simulations could not adequately capture flow regime in the reference sites comprised in this study. The lack of reliable reference conditions may seriously hamper flow-ecological assessments. This study shows the pressing need for improving assessment of natural flow regime at pan-European scale.

9.
Sci Total Environ ; 633: 220-229, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29573688

RESUMO

Water management in the alpine region has an important impact on streamflow. In particular, hydropower production is known to cause hydropeaking i.e., sudden fluctuations in river stage caused by the release or storage of water in artificial reservoirs. Modeling hydropeaking with hydrological models, such as the Soil Water Assessment Tool (SWAT), requires knowledge of reservoir management rules. These data are often not available since they are sensitive information belonging to hydropower production companies. In this short communication, we propose to couple the results of a calibrated hydrological model with a machine learning method to reproduce hydropeaking without requiring the knowledge of the actual reservoir management operation. We trained a support vector machine (SVM) with SWAT model outputs, the day of the week and the energy price. We tested the model for the Upper Adige river basin in North-East Italy. A wavelet analysis showed that energy price has a significant influence on river discharge, and a wavelet coherence analysis demonstrated the improved performance of the SVM model in comparison to the SWAT model alone. The SVM model was also able to capture the fluctuations in streamflow caused by hydropeaking when both energy price and river discharge displayed a complex temporal dynamic.

10.
Biomed Pharmacother ; 100: 205-212, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428669

RESUMO

Glioma has been considered as one of the most aggressive and popular brain tumors of patients. It is essential to explore the mechanism of glioma. In this study, we established PSMB8 as a therapeutic target for glioma treatment. Expression of PSMB8 as well as Ki-67 was higher in glioma tissues demonstrated by western blot and immunohistochemistry. Then, the role of PSMB8 in migration and proliferation of glioma cells was investigated by conducting wound-healing, trans-well assay, cell counting kit (CCK)-8, flow cytometry assay and colony formation analysis. The data showed that interfering PSMB8 may inhibit the migration and proliferation of glioma cells by reducing expression of cyclin A, cyclin B1, cyclin D1, Vimentin, and N-cadherin, and by increasing expression of E-cadherin. Additionally, interfering PSMB8 may induce apoptosis of glioma cells by upregulating caspase-3 expression. Furthermore, these in vitro findings were validated in vivo and the ERK1/2 and PI3k/AKT signaling pathways were involved in PSMB8-triggered migration and proliferation of glioma cells. In an in vivo model, downregulation of PSMB8 suppressed tumor growth. In conclusion, PSMB8 is closely associated with migration, proliferation, and apoptosis of glioma cells, and might be considered as a novel prognostic indicator in patients with gliomas.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Movimento Celular , Proliferação de Células , Glioma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Transdução de Sinais , Animais , Apoptose/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
11.
Sci Total Environ ; 573: 1536-1553, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27616713

RESUMO

This study provides a comprehensive evaluation of eight high spatial resolution gridded precipitation products in Adige Basin located in Italy within 45-47.1°N. The Adige Basin is characterized by a complex topography, and independent ground data are available from a network of 101 rain gauges during 2000-2010. The eight products include the Version 7 TRMM (Tropical Rainfall Measuring Mission) Multi-satellite Precipitation Analysis 3B42 product, three products from CMORPH (the Climate Prediction Center MORPHing technique), i.e., CMORPH_RAW, CMORPH_CRT and CMORPH_BLD, PCDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record), PGF (Global Meteorological Forcing Dataset for land surface modelling developed by Princeton University), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and GSMaP_MVK (Global Satellite Mapping of Precipitation project Moving Vector with Kalman-filter product). All eight products are evaluated against interpolated rain gauge data at the common 0.25° spatial resolution, and additional evaluations at native finer spatial resolution are conducted for CHIRPS (0.05°) and GSMaP_MVK (0.10°). Evaluation is performed at multiple temporal (daily, monthly and annual) and spatial scales (grid and watershed). Evaluation results show that in terms of overall statistical metrics the CHIRPS, TRMM and CMORPH_BLD comparably rank as the top three best performing products, while the PGF performs worst. All eight products underestimate and overestimate the occurrence frequency of daily precipitation for some intensity ranges. All products tend to show higher error in the winter months (December-February) when precipitation is low. Very slight difference can be observed in the evaluation metrics and aspects between at the aggregated 0.25° spatial resolution and at the native finer resolutions (0.05°) for CHIRPS and (0.10°) for GSMaP_MVK products. This study has implications for precipitation product development and the global view of the performance of various precipitation products, and provides valuable guidance when choosing alternative precipitation data for local community.

12.
Sci Total Environ ; 573: 66-82, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27552731

RESUMO

Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...